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Using a unitary solution of the classical Yang-Baxter equation on a Lie algebra 
qJ we describe a particular way of constructing homogeneous quadratic Poisson 
structures on the dual of a %module V and study some local features of the 
symplectic foliation due to the involutive distribution of the Hamiltonian vector 
fields. We also give some examples where the symplectic leaves are explicitly 
calculated. 

1. I N T R O D U C T I O N  

Poisson brackets on phase spaces play a crucial role in Hamiltonian 
mechanics and quantization. This led mathematicians to the study of Poisson 
manifolds. A Poisson manifold M is a smooth manifold endowed with an 
alternating 2-derivation { .,-} on the algebra of smooth functions on it such 
that {-,. } is a Lie bracket. The bivector field P defined by {.," } on M is 
called a Poisson structure on M. Hence, for any smooth function f on M we 
can associate a vector field Xf on M defined by Xf(g) = - { f ,  g} for any 
smooth function g on M. These vector fields form an involutive distribution 
and give a foliation of M in which each leaf is symplectic. These are some 
of the important features of Poisson manifolds. 

Recall. 1). If X1, X2 . . . . .  Xn is a basis of a Lie algebra q3, then R = 
E~4=t rijXi Q Xj is called a unitary solution of the classical Yang-Baxter 
equation (CYBE) on ~ (Drinfeld, 1983) if R is skew-symmetric and 

E rijrkl([Xi' Xk] ~ Xj ~ X t + X i @ [Xi, Xk] @ Xl 
i.j,k.l 

+ xi | 1 7 4  [xj, xt])  = o 
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2. If  T: V --> V is an endomorphism, then one can define a vector field 
7" on V* by 7"(f)(o0 = (a, T(df(eO)), where f E C~(V *) and o~ ~ V* (here 
we identify V with V**) (Bhaskara and Viswanath, 1988). 

Let v~, v2 . . . . .  vn be a basis of a vector space V and let xl, Xe . . . . .  xn 
be the corresponding coordinate system on V*. The endomorphisms Ta: 
V ---> V defined by T/j(vk) = ~ikVj form a basis for End(V) and define vector 
fields ~i on V*, where Tij = xj O/Oxi. 

It is proved in Bhaskara and Rama (1991)that  if 

R= 2 4tT"j| 
i,•k.l= l 

is a unitary solution of the CYBE on End(V), then 

i,Lk, l= 1 

is a Poisson structure on V*. 
A simple calculation gives that 

0 0 

and hence the Poisson structure is a quadratic homogeneous Poisson struc- 
ture (HQPS). 

In this paper we use a unitary solution of the CYBE on N to describe 
a particular way of constructing HQPS on the dual of  a ~3-module V and 
study some local features of the symplectic foliation due to the involutive 
distribution of the Hamiltonian vector fields. We also give some examples 
where the symplectic leaves are explicitly calculated as the level sets of  
Casimir functions. 

2. POISSON STRUCTURES DUE TO REPRESENTATIONS OF ~3 

Let ~ be a real, finite-dimensional Lie algebra and let qb be a finite- 
dimensional representation of ~3 in V. Consider a unitary solution R of the 
CYBE on q3. Then qb(R) is a unitary solution of the CYBE on End(V) and 
qb(R) is an HQPS on V*. Let us call it the Poisson structure due to + on V* 
(of course, it depends on R). Once R is fixed, each representation leads to 
an HQPS. The Poisson bracket of this structure is written as {. ,  �9 }R, showing 
its dependence on R. In what follows, we fix a unitary solution R of the 
CYBE on ~ and all the representations considered are finite dimensional. 
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Theorem 1. If ~b and t~ are two equivalent representations of c~ in V and 
W, respectively, then their corresponding Poisson structures are isomorphic. 

Proo f  Since + and + are equivalent representations, there exists an 
isomorphism k: V ~ W such that EndX o ~ = ~b o id, where Endk: End(W) 
--~ End(V) is defined by 

Endk(Tw)(V) = X- l (Tw(h(v) ) )  

for all Tw ~ End(W) and v ~ V. Denote by Ix the dual map k* of k. We 
can define p~.: x (W*)  -~ x (V*)  by Ix.(Xw)(f)  = X w ~  ~ Ix) ~ tx -l .  

Now, 

Ix . (Xw)( f ) (a)  = Tw ( f ~  Ix) o Ix- l (a  ) 

= ( ~ - l ( a ) ,  Tw(d f~  dw)(tx-l(a))) 

= ((or), k - lTw(h(df (oO)))  

= Endh(rw)(f)(a)  

and hence we can prove that 

= 

This shows that the Poisson structures are isomorphic. 

Theorem 2. Let qb be a representation of N in V such that ~b = Eidpi, 
where each +i is an irreducible representation on q3 in Vi and V = O~= IVy, 
where k --< dimv. Then the Poisson structure due to qb is exactly the sum of 
the Poisson structures due to the ~bi. 

Proo f  Let Bs be a basis of End(Vi) for i = 1 , . . . ,  k. Let us extend the 
elements of Bi to End(V) by declaring them to be_zero on Vj, where j ~ i. 
Call this set of extended elements B i. Now B = {Bi}i=~,,..,k is part of  a basis 
of End(V). However, B has the following property: 

(*) If T E Bi and S E Bj, then [T, S] = 0 for all i r j. 

= ~i=1 qbi, each +(X) for X e N is an endomorphism of V Since qb J' 
which can be expressed as a linear span of elements of B only. Obviously 
each~b i, treated as an endomorphism of V, is a linear combination of elements 
of Bi. 

Denote +i(R) and qb(R) by Pi and P, respectively. Pi and P are HQPSs 
on Vi* and V*, respectively, and each Pz can also be treated as a Poisson 
structure on V*. By property (*) one can prove that [Pi, Pj] = 0 (here [. , .] 
is the Schouten bracket (Bhaskara and Viswanath, 1988; Lichnerowicz, 1979) 
for all i # j and hence E Pi is an HQPS on V*. Since ~b(R) = Z/k=1 dpi(R), 
we get the required result. 
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By the above two theorems we can conclude the following: (a) It is 
enough to study the Poisson structures due to any one representative of  an 
equivalence class of representations, (b) if a representation is completely 
reducible, then it is enough to study the Poisson structures due to its irreducible 
components and (c) the Poisson structures due to equivalent representations 
give rise to isomorphic symplectic foliations. 

Representations of the semisimple Lie algebras supply a large class of 
examples, as they are completely reducible. 

Example 1. Suppose ~ = sl(2, ,~) with its standard basis X, H, Y with 
the Lie bracket relations 

[H, X] = 2X, [H, Y] = -2Y,  [X, Y] = H 

We know the description of all irreducible representations. Let V be an (r + 
D-dimensional vector space with a basis Vo . . . . .  Vr and let T~j be the basis 
of End(V) defined by the above basis of  V.. I f  + is an irreducible representation 
of sl(2, .~) in V, then ~b(H), ~b(X) are represented by the diagonal matrix { r, 
r - 2 . . . . .  - r }  and the lower off-diagonal matrix {r, r - 1 . . . .  , - r } ,  
respectively, with respect to the basis of  V. Hence 

~b(H)=  ~ ( r - 2 i ) T ~ i ,  , ( X )  = ~ ( r - j +  1)Tjj._~ 
i=O j=0 

where for j = 0 we understand that Tjj_ l = 0. Now consider R = H A X, 
a unitary solution of the CYBE on ~.  Then 

d?(R) = ~b(H)/~ ~b(X) 

= ~ (r - 2i)(r  - j + 1)xixj_l A A 
i,j=O ...... OXi OXj 

Therefore the Poisson brackets are given by 

{Xk, Xl}R = (r -- 2k)(r - l + 1)XkXt-i -- (r -- 2l)(r -- k + 1)xtxk-1 

for k, 1 = 0 . . . . .  r, where we define x_ 1 = 0. 

3. CASIMIR FUNCTIONS AND THE SYMPLECTIC FOLIATION 

Let V = O/k=l V i and let P = EiPi be a Poisson structure on V where 
each Pi is a Poisson structure on V~ for each i. Choose a coordinate system 
on each V~. Then all these coordinate systems together form a coordinate 
system on V.. It is easy to see that rank P(x) = Ei rank Pi(xi) where x = Eix~. 

The set D = {x ~ V: P(x) has the maximal rank} is open and dense in 
V. We can choose a neighborhood U of  x = E~xi in V such that U = 
~ki=lU i where each U/is  open in Vi. 
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Let {f~,i }Ks be a maximal independent set of Casimir functions on the 
Poisson manifold (U i, Pi). Then {{fi~}Ki}i form a maximal independent set 
of Casimirs on (U, P). 

Since locally the symplectic leaves are given by the common level sets 
of Casimir functions, around a point x in D we can describe the symplectic 
leaves of (U, P) if we know the symplectic leaves of each (Ui, Pi). This is 
not the case when x ~ D. 

Let R be a unitary solution of CYBE on ~. We denote by {. ,  �9 }L the 
linear (or Lie-) Poisson structure on ~3" and by {. ,  "}R the HQPS on N* due 
to the ad-representation. Then any Casimir with respect to {, ,  �9 }L is a Casimir 
with respect to {-, �9 }R. Indeed, choose a basis {Xi}i of N and the coordinate 
system {x i }  i defined by it on ~*. If R = Zi,jrijXi (~ Xj with rij = --rji, then 
for any f, g e C=(q3 *) we have 

{f, g}R = ~a rij{f, xi}L{xj, g}L 
t,J 

This proves the claim. 

An interesting consequence of the above claim occurs when the dimen- 
sion of the Lie algebra is three. For any R the HQPS due to the ad-representa- 
tion and the Lie-Poisson structure have the same symplectic leaves around 
any point at which both the structures have the maximal rank. This is true 
because the dimension of any symplectic leaf with respect to any structure 
must be two. Hence by the above discussion we can conclude that there 
exists a Casimir which describes the symplectic leaves of both structures 
around the point. In the following examples one can observe this fact. 

All the results and the discussions in this article conclude that it is 
enough to know the description of the symplectic leaves (at least locally) of 
the HQPSs due to irreducible representations on the dual of a Lie algebra 
module. This will enable us to describe the symplectic foliation locally around 
any point of an open dense subset of the direct sum of the duals of the 
irreducible modules. In what follows we discuss the Casimirs of some HQPSs 
due to the adjoint representation. 

Example 2. 1. Let N = NI(2, ~ )  with the standard basis {Xl, X2, X3, 
X4}, where each is a 2 • 2 matrix with all the entries equal to zero except 
that the (1 • 1) entry in Xl, the (1 • 2) entry in X2, the (2 • 1) entry in 
x3, and the (2 • 2) entry in X4 are ones. It is easy to check that R = X~ /k 
X2 is a unitary solution of the CYBE on q3. Let {&, x2, x3, x4} be the coordinate 
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system on q3* defined by {X1, X2, X3, X4}. Then the HQPS on q3* due to 
the ad-representation is given by 

{x,, x~}~ = x~, 

{Xl, X4} R : O, 

{x2, x4}R =x~, 

{Xl, X3}R = --X2X3 

{X2, X3}R : XlX 2 -- X2X4 

{X3, X4}R = --X2X3 

The plane {X 2 = 0} is the set of singularities of the above Poisson structure. 
Hence each point of this plane is a symplectic leaf of dimension zero. The 
two Casimir functions are x2x3 - xlx4 and xlx2x3 + XzX3X4 - x lx]  - x~x4. 

2. Let ~3 = so(3, 9~) with the basis {Xl, X2, X3} with which the Lie 
bracket relations are as follows: 

[Xl, X2] = X3, [X2, X31 = Xl, [X3, Xl] ~-- X 2 

It is easy to check that R = XI A X2 is a unitary solution of the CYBE on 
~3. Let {x~, x2, x3} be the coordinate system on ~3" defined by {X1, X2, X3}. 
Then the HQPS on q3* due to the ad-representation is given by 

{Xl, x2lR = x3 2, {x2, x3}R = x~x3, {x3, xl}R = x2x3 

The plane {x3 = 0} is the set of singularities of the Poisson structure. Hence 
each point of this plane is a symplectic leaf of dimension zero. x~ + x 2 + 
x3 2 is the Casimir. 

3. Let ~3 = sl(2, ,~) with the basis {X, H, Y} with which the Lie bracket 
relations are as follows: 

[H, X] = 2X, [X, Y] = H, [H, Y] = - 2Y 

It is easy to check that R = H / ~  X is a unitary solution of the CYBE on q3. 
Let {x, h, y} be the coordinate system on ~3" defined by {X, H, Y}. Then 
the HQPS on q3* due to the ad-representation is given by 

{h, x}R = 4x  2, {x, Y}R = 2hx,  {h, Y}R = - 4xy 

The plane {x = 0} is the set of singularities of the Poisson structure. Hence 
each point of this plane is a symplectic leaf of dimension zero. xy + h 2 is 
the Casimir. 
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